
Implementing Modality in Algorithmic Composition
V. J. Manzo

Steinhardt School of Education
New York University
New York, NY 10003

vjm229@nyu.edu

ABSTRACT
Data-driven and rule-based algorithmic composition techniques can
benefit from a global set of data constructs to work within a tonal
framework. The Modal Object Library is a collection of algorithms
to control and define modality in the Max/MSP/Jitter programming
environment. A description of each data object is included as well as
a description of the programming technique used toward its
development. An explanation of the theoretical musical concepts
related to the implementation and application of these objects is
described in detail. Examples of algorithmic music composed with
these objects are given. The object is available from the author’s
website at http://www.vjmanzo.com/mol.

Categories and Subject Descriptors
Programming Languages: Language Constructs and Features –
classes and objects, control structures.

General Terms: Languages.

Keywords: Algorithmic Composition, Max/MSP/Jitter, Visual
Programming Language, Multimedia, Digital Audio, Computer
Music, Modality, Music Theory Models, Modal Object Library

1. INTRODUCTION
The Modal Object Library [1] is a collection of algorithms to
define and control modality in the max/MSP/Jitter [2]
programming environment. The heart of the Modal Object
Library is the Modal Change object which interprets all of the
scale data for major, harmonic minor, harmonic major and
melodic minor and each of the 7 modes for each of these
categories (28 modes all together). It outputs all of the pitch
classes in order and stores the data in a table as well. It also puts
the data into a coll list file which can easily filter incoming notes
that are not from the user selected mode to those from the mode.
For instance, if you play a D in Db Major, the list file will bump
the note down to Db.
Additional objects in the library are Modal Shift (finds modes
related to the one you select sharing 6 of the 7 notes), Modal
Mutation (same as Modal Shift but excludes the list of related
modes to those sharing a common tonic), the Messiaen Objects
(utilizes the Messiaen Modes of Limited Transposition), Modal
Chord and Modal Triad (for chords and triads), Modal Prog, for
creating 4, 8, 12 or 16 bar progressions based on each mode.
The Modal change object and the Messiaen objects all have the
ability for you to input your own scale degree distance map (in
steps. For instance major scale is 2 2 1 2 2 2 1). If the user entered
mode is unidentified it will say that it doesn't have a name for it,
but will still output all pitches from the scale in order and input
the data into a table.
The library also includes networking objects optimized for
controlling objects in this library over a network, and an analysis
object that takes all notes played within a specified time frame
and identifies the mode.

This library was created primarily to aid in my own compositional
interests including algorithmic compositions and interactive music
systems. Examples of my works that implement these objects can
be heard and seen at www.vjmanzo.com/cv. This library was
originally conceived to aid in teaching modal relationships to my
theory students.

2. BACKGROUND
Musical modes are collections of notes in some ordered class with
a structured distance between pitches. A wealth of literature exists
concerning the Greek modes and the Church modes. For the
purposes of this paper, we will focus on the 28 modes that are
derived without chromatic alteration as they occur from the seven
modes of the major scale, the seven modes of the harmonic minor
scale, the seven modes of the melodic minor scale, and the seen
modes of the harmonic major scale.

The sense of modality occurs by creating a sense of tonic
relationship between a given sale degree and the other 6 notes of
the collection. The major scale (also known as the Ionian mode),
has a unique distance structure of whole steps (W) and half steps
(H). This structure can be read (W W H W W W H) whereas the
distance between the tonic and the next note is a whole step (W
W H W W W H). Scale degree two is a whole step below scale
degree three (W W H W W W H). Scale degree three is a half-
step below scale degree four (W W H W W W H).

In order to have a computer interpret these distances, we simple
calculate the semitones (half steps) as integers: whole step = 2
(two semitones), half step = 1 (one semitone). The major scale
distance map can now be written as (2 2 1 2 2 2 1) instead of (W
W H W W W H).

The harmonic minor scale and the melodic minor scale can also
be reduced to interpretation by scale degree distance. The
harmonic minor scale, however, contains the interval of an
augmented second, a whole step plus one semitone. Its scale
degree distance map is written (2 1 2 2 1 3 1). The melodic minor
scale (ascending) is written as (2 1 2 2 2 2 1).

What I am calling the Harmonic Major scale is the seven note
collection similar to the major scale except with a flatted sixth
scale degree. Flatting the sixth scale degree makes way for the
introduction of what are known as borrowed chords, chords
“borrowed” from the parallel key. Triadic chord realization from
the Harmonic major scale yields seven chords similar to that of
the major scale with exception of the introduction of some triads
that are borrowed from the parallel minor key.

Figure 1 shows the triads that occur naturally in the C Major scale
compared to the triads that occur naturally in the C Harmonic
Major scale.

In the harmonic major scale, both triads built on scale degrees two
and four occur naturally in C minor. An augmented triad is also
introduced on the flatted sixth scale degree. The harmonic major
scale degree distance map can be written as (2 2 1 2 1 3 1).

Figure 1. Triads as they occur in diatonic keys

In each of these four instances, the tonic of the aforementioned
scale is the first scale degree. When a strong sense of tonal center
is placed on another scale degree, we refer to the collection as a
mode of the new tonal center; the same collection of pitches with
a new sense of tonic.

Figure 2 shows the scale degree distance map for all 28 modes of
the major, harmonic minor, melodic minor, and harmonic major
scales. We will use the Greek names commonly used to refer to
the modes of the major scale.

 Major Harmonic Major Harmonic Minor Melodic Minor

Mode 1 2 2 1 2 2 2 1 2 2 1 2 1 3 1 2 1 2 2 1 3 1 2 1 2 2 2 2 1

Mode 2 2 1 2 2 2 1 2 2 1 2 1 3 1 2 1 2 2 1 3 1 2 1 2 2 2 2 1 2

Mode 3 1 2 2 2 1 2 2 1 2 1 3 1 2 2 2 2 1 3 1 2 1 2 2 2 2 1 2 1

Mode 4 2 2 2 1 2 2 1 2 1 3 1 2 2 1 2 1 3 1 2 1 2 2 2 2 1 2 1 2

Mode 5 2 2 1 2 2 1 2 1 3 1 2 2 1 2 1 3 1 2 1 2 2 2 2 1 2 1 2 2

Mode 6 2 1 2 2 1 2 2 3 1 2 2 1 2 1 3 1 2 1 2 2 1 2 1 2 1 2 2 2

Mode 7 1 2 2 1 2 2 2 1 2 2 1 2 1 3 1 2 1 2 2 1 3 1 2 1 2 2 2 2

Figure 2. Step patterns for all modes in diatonic keys

Ionian Dorian Phrygian Lydian Mixolydian Aeolian Locrian

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Figure 3. Traditional Greek mode names used to label diatonic major modes

There are differing views held concerning the names of the modes
of other seven-note collections. Here, I have named the modes
according to their similarity to one of the common modes
accounting for the least amount of chromatic inflections. For
examples, Mode 4 of the melodic minor scale (2 2 2 1 2 1 2) most

closely resembles the Lydian mode with a flatted seventh scale
degree. Thus it is named Lydian b7.

Figure 4 shows all of the modes named according to the Greek
names with the least amount of chromatic inflections.

 Major Harmonic Major Harmonic Minor Melodic Minor

Mode 1 Ionian Harmonic Major Harmonic Minor Melodic Minor

Mode 2 Dorian Dorian b5 Locrian #6 Dorian b2

Mode 3 Phrygian Phrygian b4 Ionian #5 Lydian #5

Mode 4 Lydian Lydian b3 Dorian #4 Lydian b7

Mode 5 Mixolydian Mixolydian b2 Phrygian #3 Mixolydian b6

Mode 6 Aeolian Aeolian b1 Lydian #2 Locrian #2

Mode 7 Locrian Locrian b7 Mixolydian #1 Locrian b4

Figure 4. Chromaticized Greek labels applied to other scales

3. ALGORITHM LIBRARY OVERVIEW
The Modal Object Library is a collection of objects I have created
for Cycling 74’s graphical programming language Max. These
objects allow programs to understand and interpret advanced

knowledge of modality including analysis, common-tone
modulation, and triad realization.

Modal Change

C Major

Scale

I

C – E – G

(C Major)

ii

D – F – A

(d minor)

iii

E – G – B

(e minor)

IV

F – A – C

(F Major)

V

G – B – D

(G Major)

vi

A – C – E

(a minor)

vii0

B – D – F

(b0)

C Harmonic

Major Scale

I

C – E – G

(C Major)

ii0

D – F – Ab

(d minor)

iii

E – G –B

(e minor)

iv

F – Ab – C

(F Minor)

V

G – B – D

(G Major)

vi

Ab – C – E

(Ab+)

vii0

B – D – F

(b0)

The modal_change object allows a user to specify a tonic and
diatonic mode in its two inlets and get the pitch class value of
each scale degree out its eight outlets. A user can send a pitch
class number or a letter name message to its left inlet to set the
tonic. A message box with a mode name such as major, minor,
Phrygian, Lydian b7, can be sent to the right inlet to build up a
scale from the given tonic. The object will output the scale
degrees for any tonic within the modes of the major scale, the
melodic minor scale, the harmonic minor scale, and the harmonic
major scale (the major scale with flatted 6). Instead of using one
of the mode names to build a scale, a user can also send a
message with the number of whole steps and half steps desired to
build their scale, and receive the scale degree pitch classes from
its outlets.

Double clicking the object will open a display that allows the user
to see what mode they’re in and other information related to the
mode including scale degree distances that make up the scale and
the particular mode’s context within the larger pitch collection.

The object can receive all of the organized pitch class data into a
table or by using an internal table with the argument table1.

The object can also receive the organized pitch class data into a
coll list or by using an internal coll list with the argument scale.
The coll list also has an added feature: it will take any incoming
pitch and filter it to the nearest note from the selected scale.

This allows you to set the tonic and mode, and filter all incoming
pitch data so that whatever note is played, it will conform to the
diatonic pitch collection you’ve selected.

Modal Triad

The modal_triad object allows a user to play tertian chords of any
quality. It receives scale data from the modal_change object and,
when a tonic and mode is selected, the object receives the
numbers 1-8 in its leftmost inlet to output the notes of the chord
function associated with that number. For example, in major keys,
the numbers 1, 4 and 5 are always major chords, 2, 3, and 6 are
minor, so, if C Major is selected, a 2 sent to the modal_triad
object will yield the notes of a d minor chord.

For each selected chord, the notes of that chord are sent to the
object’s 7 outlets in the following order: root, third, fifth, seventh,
ninth, eleventh, and thirteenth. Alterations like flat ninth or sharp
eleventh are inferred by the chord function as it relates to the
selected tonic and mode.

The second inlet of the object allows the chord tones, received as
pitch classes, to be restricted to one octave.

The object also takes Roman numeral functions to yield chords.
The standard capital Roman numerals for major, lower case
Roman numerals for minor are used. A lower case Roman
numeral iv in the key of C Major will yield an F minor chord
regardless of the fact that chord has non-diatonic chord tones in it,
the Ab.

A capital Roman numeral with a plus sign next to it will yield an
augmented chord, and a lowercase Roman numeral with a zero
next to it will yield a diminished chord.

In the same manner, a user can use letter names to build chords. A
capital C will yield a C Major chord while a lower case e will
yield an e minor chord. A capital C plus will yield an augmented
chord and a lower case d zero will yield a d diminished chord.

This object also receives messages for tonicizations. A user can
send the message Roman numeral V/5, to yield the 5 of 5 (a D
Major chord in the key of C Major). The V Chord Tonicizations
produce a Dominant 7th chord for each scale degree in the
selected mode. That is, the root, 3rd, 5th, and 7th will form a
Dominant 7th Chord exactly one perfect 5th above a given scale
degree. The 9th, 11th, and 13th pitches of the chord are inferred
according to the selected mode and NOT the mode from which
the tonicizing chord prevails.

Similarly the object allows other types of tonicizations including
leading tone tonications and minor four tonicizations. Augmented
6th chords and Neopolitan chords can also be implemented.

The object also has 7 switches that can be set to restrict notes
from reaching the outlets.

Modal Prog

The modal_prog object takes a list of chords (as in a progression)
in its right inlet and outputs each of those chords one at a time to
the modal triad object when a bang is sent to the left inlet. The
object integrates with the modal_triad object and will interpret
any message that modal triad does.

By default, a new list of chords triggered when a list is currently
being played will sound on the next bang received. With the
optional argument '@immediate 0', a new list of chords triggered
when a list is currently being played will sound as soon as each
chord from the first list has been played.

Modal Shiftlist

The modal_shiftlist object receives a tonic and mode name in its
inlets and populates a list of all related modes sharing 6 of 7
notes. It takes the pitches of the scale and moves each scale
degree up or down one at a time to see if a new diatonic mode can
be formed. This process will list 42 related modes for any of the
major scale modes, 28 related modes for any of the melodic minor
scale modes, 21 related modes for any of the harmonic minor
scale modes, and 21 related modes for any of the harmonic major
scale modes.

When one of these related modes is selected from the list, the
object automatically repopulates the list with modes related to the
new key.

Modal Shift

The modal_shift object is similar to the modal_shiftlist object, but
it is optimized to randomly choose one of the related modes when
a bang is sent to its left inlet.

Modal Mutation

The modal mutation object is identical to the modal_shift object,
but it outputs only those related modes sharing a common tonic or
a semitone inflection of the tonic.

Modal Mediant

The modal_mediant object receives a tonic and mode name in its
inlets and populates a list of modes in a chromatic median
relationship with the initial mode. When one of these related
modes is selected from the list, the object automatically
repopulates the list with modes related to the new key.

Modal Messiaen Objects

The Modal Messiaen objects operate similarly to the
modal_change object, but output the pitch classes of Messiaen’s
Modes of Limited Transposition. You can send it messages like C

Whole Tone or E octatonic to receive the pitch classes of that
mode. These objects are also useful for creating modes with 6, 8,
9, or 10 unique scale degrees as it also accepts scale degree
distances.

Modal Analysis Objects

The modal_analysis object takes incoming notes in its left inlet
and determines in what mode and tonic you’re playing when a
bang is sent to its right inlet. The object attempts to filter out
repetitions and organize notes to infer a mode. Double clicking
the object will reveal a window similar to that of the modal
change object which shows the mode as well as the scale degree
distances that make up the scale and the particular mode’s context
within the larger pitch collection.

The ordered scale degrees are output as a list from the objects left
outlet and the scale degree distances are output from its second
outlet.

The modal_analysis+ object does everything modal_analysis
does, but is also set to integrate with the modal change object to
trigger a new mode change when a mode is analyzed. A user
could conceivably play a scale, have it analyzed and then generate
chords from that scale in real-time.

Modal PC Match

The modal_pc_match object takes an incoming note in its left
inlet and compares it against the diatonic pitch classes of any
scale as defined by the modal_change object. If the incoming
pitch matches one of the pitch classes of the scale, the object
outputs a bang from one of its first seven outlets.

The object also defines the chromatic notes between diatonic
scale degrees. If an incoming pitch matches a chromatic scale
degree, the object outputs a bang from one of the next 14 outlets.
For example, a C# played in the key of C Major is between scale
degrees 1 & 2 - C & D - a whole step. An incoming C# in any
octave will send a bang out of the outlet marked “Match Scale
Degree #1” [read Sharp One].

The incoming note may also match a chromatic scale degree
between a step and a half (3 semitones). In this case, two
chromatic notes are next to each other separated by a half step.
The lower of the two chromatic notes is referred to as the “#1”
(assuming that the step and half interval is located between scale
degrees 1 and 2 as is the case in the sixth mode of the harmonic
minor scale, Lydian #2). The other chromatic note is closer to the
higher scale degree and would be referred to as “b2”, thus the
object would output the message “Match Scale Degree b2”. For
example, imagine a G played in the key of A Harmonic Minor
(between scale degrees 6 & 7 - F & G#). An F# is interpreted as
“#6” and the G is interpreted as “b7”. Note: only the harmonic
minor and harmonic major scales and their modes have two scale
degrees separated by a step and a half.

In addition to matching chromatic pitches, the modal_pc_match
object also outputs the chromatic pitch classes out of its last 14
outlets. Note that this means some notes will be redundant. For
example, scale degree_b2 will be the same pitch as scale
degree_#1 in Major keys. Once again, this will not be the case in
the modes of harmonic minor and harmonic major where two
pitch classes are separated by 3 semitones.

Modal Fuzzharm

The modal_fuzzharm object outputs a fuzzy logic chord
harmonization based on incoming pitch classes. The object

integrates with several objects in the modal_object library
including the modal_pc_match object to determine if the
incoming note played is diatonic or chromatic and that notes
relationship in the context of the specified tonic and mode. For
example, is the incoming note scale degree 1? Is it chromatic
scale degree #4? If so, how do we want to harmonize that note
when we receive it?

Double clicking the modal_fuzzharm object allows a user to see a
table of chord symbols that the modal_triad object can interpret.
The user can increase the probability weight to the table by
clicking on one of the cells in the column for the desired
chord/function listed in the top row. By default, all probabilities
are set to zero. For example, if the incoming note matches scale
degree one, you’d probably want to harmonize that note with the I
chord, the IV chord and the vi chord since that scale degree one is
present in all of these chords. Other chords may be used to
harmonize that note as well, but you’d probably want the object to
choose some chords more frequently than others, so we give them
a higher table weight by clicking further down on the cells.

A bang sent to the modal_fuzzharm object will choose one of the
chords to harmonize that note with based on the weightings
you’ve specified. The table can be opened and presets can be
saved. In the help file for this object, the seven diatonic scale
degrees all have modal_fuzzharm objects connected so that when
one of these scale degrees is played, the note will be harmonized
in any way the user specifies. A specified table file has been
loaded for each modal_fuzzharm object when the help opens
which illustrates some default probability settings that harmonize
these notes with diatonic chord functions.

Modal Filter

Modal_filter is a simple abstraction that utilizes modal_change’s
built in coll list feature. The abstraction shows an incoming pitch
separated into octave class and pitch class. A chromatic pitch
class is then filtered to a diatonic one and merged with its octave
class. Thus, any non-diatonic notes will become diatonic ones.

Modal Strictmod

Modal_strictmod is a simple abstraction that allows the modal
change object to cause a strict modulation from one key to
another. It takes the initial tonic in its right inlet and the new tonic
in its left inlet and outputs the index of transposition number
through its outlet.

Modal Netsend & Modal Netreceive

The modal_netsend and modal_netreceive objects are simple
abstractions designed to optimize sending modal_change
messages over a network. It uses normal UDP network features
for port and IP address specification.

Modal Line

The modal_line object operates similarly to the line object in
terms of "ramping" from one number to the next. However, the
ramp in modal_line only includes diatonic pitches of a specified
mode.

Modal Chord Analysis

The the modal_chord_analysis object identifies a list of notes as
tertian chords. The root, chord quality, harmonic function,
inversion, and bass note are given as output. For added notes
beyond the triad, M is used to indicate major intervals, m for
minor intervals, P for perfect intervals. # and b are used to
indicate alterations in perfect intervals.

4. EARLY LIBRARY DEVELOPMENT
This object library development began in Max version 4 with a
single standalone application I wrote to help my theory students
name the modes by manually entering the notes of a seven-note
collection and asking the computer to name the mode. To achieve

this, I began writing a Max patch that contained seven kslider
objects which display seven two-octave keyboards. This allows a
user to manually select each note of any mode starting on C (pitch
class 0) through to B (pitch class 11). All notes entered send an
appropriate pitch class number to seven number boxes (see Figure
5).

Figure 5. Pitch classes for the C Major scale

Once we have a pitch class number for all seven degrees, we are
able to map the distance between any two degrees by subtracting
the first scale degree’s pitch class number from the second scale
degree’s pitch class number. In Figure 5, we see that the first
scale degree is 0 and the second is 2. When we subtract scale
degree 1 (0) from scale degree 2 (2), we will have the number of
semitones between them (2). The difference of 2 represents two
semitones, or one whole step.

When we repeat this process for all 8 scale degrees (including the
octave) we will get the distance map for the manually entered

notes: (2 2 1 2 2 2 1). We will pack these numbers into a list using
the pack object and then, using the match object, we will cause
any occurrence of this pattern to display the first scale degree (as
a letter name, not a pitch class number) followed by the phrase
“Major Scale/Ionian Mode” & “Mode 1 of the Major Scale”. The
distances between the scale degrees of C Major are identical for
all major scales, so entering the notes of E Major will yield the
same distance map and, thus, display.

Figure 6. Pitch classes for the E Major scale showing modal context

By creating 28 match objects for each of the 28 modes defined
earlier, we can map all of the scale degree distance maps (see
Figure 2) to the appropriate mode names (see Figure 4).

Storing the Pitch Data in Tables

In order to implement the concepts of the mode naming software
in software that will utilize the pitch class data in some useful
way, the data must be stored in such a way that it is easy for
programmers to incorporate into their existing work. The most
obvious way of make this object more useable is to simply output
all 7 pitch classes into number boxes.

Figure 7. Single object outputting scale data

To take the functionality of this object on step further, when a
new mode is entered, the data is stored in a table. The table is
Figure 8 shows each of the pitch classes of the E Major at the
appropriate table address. As you can see, the first four pitch
classes (0-3) are not in use and are at zero.

Figure 8. Scale data formatted into a table

In Max, another common way of storing data is in coll lists. By
sending the message [send scale0 0] to the table containing the

pitch classes, the value of the table at the address 0 will be sent to
the receiving object named scale0. Sending similar messages to
the table for all of the addresses which might be used to contain
pitch class information (0 – 23), we will soon have the
information from our table in a list. Table addresses where there
is a usable pitch class will return a non-zero integer whereas all
addresses where there is not a pitch being used will yield a zero.

Filtering Data from Atonality to Modality

The benefit of using the data in a list is that it can be used to filter
route incoming notes that are not from a specified mode, to those
from a specified mode. Figure 9 shows a simple Max patch in
which the incoming MIDI notes are separated into pitch class and
octave register (by using the modulo & divide operators). The
pitch classes are sent through the list before being combined with
the octave register.

The list the pitch classes are sent through contains information
about routing incoming pitches to a new pitch class from the
selected mode. The list in Figure 9 shows each pitch class within
one octave being routed to the nearest pitch of the E Major scale.

Figure 9. Modulo operation performed on incoming notes
according to filter map (at right)

The pitch C (pitch class 0) becomes C# (pitch class 1) from the E
Major scale. In Figure 9, any pitch played will be filtered to one
of the nearest notes in the E Major scale. This is accomplished by
mapping all address in the table (0-23) and mapping the pitch
class to 1 of 24 placeholders. For now, it does not matter that
pitch class numbers exceed 11 (one octave). Twelve will be
subtracted from all pitch classes above eleven later on in the
algorithm. I have named the placeholders “SD#” for scale degree
and each of the seven possible scale degree positions.

Figure 10 shows the values of the table being assessed [receive
scale4]. If there is activity at a given table address, a 4 will be sent
to the list to indicate that E (pitch class 4) is a usable pitch class in

the selected mode. If there is no activity of that scale degree in the
table a zero will result.

Figure 10 shows all zeros (pitch classes not from the selected
mode) being compared to its neighboring scale degrees. A series
of “if, then, else” expressions will analyze what the values of the
neighboring pitch classes are and choose the one closest to
become the resulting pitch class whenever the unusable, non-
modal, pitch is encountered.

Figure 10. Scale degrees mapped with if then else statements

Both the table and the list update in real-time as soon as a mode is
named, making it useful for real-time performance and
composition.

Matters of Interfacing

The basic concept of this object and the way it routes data was
useful, but was lacking in terms of interface design. How would
one access a particular mode quickly; certainly not by manually
inputting each of the seven scale degrees.

The second version of the modal change object takes a MIDI
pitch class in the left inlet (a pitch letter name message to the inlet
also routes to the appropriate pitch class) and determines the tonic
of the mode. The right inlet takes mode name messages which
trigger the appropriate scale degree distance map to be applied to
the tonic scale degree (the fundamental of the calculation).

Version 2.0 of the Modal Change object implemented a slightly
new design for the display interface by showing the degree
distance patterns for a given mode (Figure 11). The object also
takes degree distance patterns in its right inlet allowing you to use
any custom 7-note scale as you would the 28 preconfigured
modes.

Users familiar with the Max programming environment will
understand that mode changes can be easily mapped to user input
such as MIDI messages. Even though all of the objects contained
in the Modal Object Library are intended for use inside of the
Max environment, users who wish to create similar algorithms in
other programming languages can do so using similar concepts of
scale degree distance mapping and matching

Figure 11. Modal_change 2.0 object interface

Messiaen Modes

Modal Change 2.0 allows a user to add their own degree distance
pattern, which effectively enables a user to implement any seven
note collection into their compositions. So why stop at seven-note
collections? A major contribution to the Modal Object Library
followed the release of Modal Change 2.0: the Modal Messiaen
objects.

The Modal Messiaen objects are 4 objects that operate almost
identically to the modal change object. Instead of giving the
modes of the 7-note collections, they give the Modes of Limited
Transposition as named by Olivier Messiaen. The same
construction based on degree distances is used and a user may
easily add custom degree distances patterns (degree distances are
shown in Figure 12).

Olivier Messiaen’s Modes of Limited Transposition

Organized by number of scale degrees

 Messiaen 6 Note Collections
o 2 2 2 2 2 2 Whole-tone, Messiaen mode 1
o 1 1 4 1 1 4 Messiaen mode 5
o 4 1 1 4 1 1 Messiaen mode 5 inverse

 Messiaen 8 Note Collections
o 1 2 1 2 1 2 1 2 Octatonic, Messiaen mode 2

Half-Whole step scale
o 2 1 2 1 2 1 2 1 Octatonic, Messiaen mode 2 inverse,

Whole-Half step scale
o 1 1 1 3 1 1 1 3 Messiaen mode 4
o 3 1 1 1 3 1 1 1 Messiaen mode 4 inverse
o 1 1 2 2 1 1 2 2 Messiaen mode 6
o 2 2 1 1 2 2 1 1 Messiaen mode 6 inverse

 Messiaen 9 Note Collections
o 1 1 2 1 1 2 1 1 2 Messiaen mode 3
o 2 1 1 2 1 1 2 1 1 Messiaen mode 3

 Messiaen 10 Note Collections
o 1 1 1 1 2 1 1 1 1 2 Messiaen mode 7
o 2 1 1 1 1 2 1 1 1 1 Messiaen mode 7 inverse

Figure 12. Modes of Limited Transposition step patterns

The objects Modal Messiaen 6, Modal Messiaen 8, Modal
Messiaen 9, and Modal Messiaen 10 each generate the number of
scale degrees specified by the argument (following ‘Modal
Messiaen’). In addition to generating the appropriate note
collection when requested by sending a message to the right inlet,
these objects will take any scale degree pattern in the right inlet as
well allowing the user to add their own custom modes for 6, 8, 9
and 10 note collections in addition to the custom 7-note modes
available through the Modal Change object.

The Modal Messiaen objects also have the same table feature as
the Modal Change object which allows their data to be stored in a
table in addition to supplying each scale degree of the mode.

Modal Analysis

The Modal Object Library has several objects for Modal Analysis
that allow the user to send pitches and have the mode identified.
When the analyze button is pressed, the scale degrees are
analyzed and a degree distance pattern is matched against a
database where the pattern is identified.

The Modal Analysis object performs the same actions with some
added features: it can take lists or MIDI pitches (not just pitch
classes), it can analyze notes in any specified time threshold while
filtering out repetitions. This makes it useful for real-time
analysis.

Modal Analysis has three outlets which output the pitches of each
scale degree in order regardless of the order they were received,
the scale degree distance pattern (which can be used to trigger the
modal change object), and a bang when the analysis takes place.
By using this object with the modal change object, a performer
can play something, have it analyzed and have something else
played back in response in the same mode. Figure 13 shows the
Modal Analysis object and the display window.

Figure 13. Analysis object

As is the nature with simple analysis algorithms like this one,
Modal Analysis has some shortcomings. It takes the lowest pitch
as the scale tonic, even though the lowest scale degree played in a
time frame does not explicitly mean that it is the tonic of the
scale. For example, if you play the pitches C, D, E, F, G, A, B, C,
Modal Analysis will call it C Major, but if you play E, F, G, A, B,
C, D, E, it will call it E Phrygian. While both of these analyses
are correct in identifying the appropriate mode, Modal Analysis
1.0’s analyses are contextually independent.

Algorithms for Modal Relationships

The Modal Change object allows us to easily recall the pitch
classes of the 28 modes in Figure 4. An understanding of modal
relationships, that is, the similarities and differences between two
modes, provides a mechanism for implementing the Modal
Change object in composition and performance.

Modal Shift

The Modal Shift object takes the specified mode of the Modal
Change object and looks at all of the possible modes that are
related to the present mode by changing just one note of the 7
note collection. By retaining 6 of the 7 notes of a given mode and
creating an tonic emphasis on a given scale degree, the Modal
Shift object populates a list of all related modes and modulates to
this mode when it receives input in its far left inlet.

In order to create this object, an understanding of the relationships
must be established. By taking a seven note scale and shifting
each scale degree either up or down a semitone yielded either a
mode of the major, harmonic minor, melodic minor, or harmonic
major scale, or none at all. Figures 14 - 17 shows the complete list
of modes that are accessible by shifting just one note and placing
tonal emphasis on a given scale degree.

Figure 14. Related Modes of the Major Scale; 42 in all

Figure 15. Related Modes of the Harmonic Minor Scale; 21 in all

Figure 16. Related Modes of the Melodic Minor Scale; 28 in all

Figure 17. Related Modes of the Harmonic Major Scale (major scale b6); 21 in all

Once these figures were realized, an object was built that takes
the mode tonic and mode type information from the Modal
Change object and selects a related mode using a 1st Order
Markov chain selecting the next mode based on the previous
mode.

Switching from C Ionian to C# Locrian b4 is as simple as creating
a single operation that both raises the mode tonic one scale degree
(by adding one to the tonic pitch class number) and sends a

message to the Modal Change object to change to the mode
Locrian b4. The Modal Shift object implements all of these
operations allowing a user to send an input to the objects left inlet
to cause a shift to a related mode.

Expansion to Tertian Triadic Harmony

Since we have a collection of objects that can produce scales, we
can now form triads from how they occur naturally in modes. The
Modal Triad object connects to the Modal Change object to allow

a user to play tertian triads based on any mode. Modal Triad
generates the third and fifth above any scale degree (becomes the
root) to make triadic harmony.

Sending the numbers 1-8 to the left inlet of Modal Triad will
produce the chord function associated with that number. For
example, sending the message “1” in the key of C Major will
produce a C Major triad (the I chord in C Major). Sending the
message “5” in A Harmonic Minor will produce an E Major triad
(the V in A Harmonic Minor). An optional on/off argument
toggles between triads in root position or triads in inversions by
restricting pitch classes to a single octave. Figure 18 shows an
implementation of the Modal Triad object to play back diatonic
chords.

Figure 18. Messages 1 – 8 used to play chords in E Major

5. COMPOSITION EXAMPLES
An example of using the Modal Change object’s coll list feature
can be heard in my 2007 work for guitar and software Optical
Stringi. The software used is a program I wrote in 2006 called
Lazy Guy which tracks the color of a laser pointer and maps it’s X
Y orientation to produce pitch and velocity.

As is the case with many new electronic instruments for musical
expression, implementing a sense of idiomatic traits, especially
with regard to tonality, is often difficult and, more so, overlooked.
An implementation of the Modal Change object allows Lazy Guy
to easily conform to any key/mode in real-time. This creates a set
of idiomatic performance gestures that conform comfortably to a
user-defined note collection.

The first formal piece I composed using the Modal Change object
was Modal Change (2007) for string orchestra, harp and piano.
Using only the pitch table from the Modal Change object and
some patches to create rhythm, I created a Max patch that
assigned an octave and register to multiple “pitch engines” that
created the score for each of the instruments using the table data.

I wrote a patch to control the overall textural design and confined
the pitch engines to producing small, minimalist gestures in equal
phrases. My harmonic intention was to have the patch begin with
a single 7-note collection (C Major) and every 16 measures or so,
have the piece choose another mode closely related to C Major by

changing only one scale degree. For examples, the C major scale
can easily become C Lydian by changing just one note. C Lydian
can then become C Lydian b7.

The changes in mode (which I refer to as a mode row) continue in
this way until all 28 modes are used. The Max patch then
cadences and stops. The idea of related modes by changing just
one scale degree (which easily allows common-tone modulation)
became the basis of the second object in the Modal Object
Library: Modal Shift

Monochrome (2007) is an interactive music system that generates
pitch material with data received through a graphics tablet (such
as a Wacom). A graphic artist begins drawing a picture on the
tablet and pitch is generated based on the X, Y orientation of the
pen. Velocity is determined by pen pressure against the graphics
tablet.

In Monochrome, an initial mode of C Major is set at the beginning
and all pitches are filtered to the notes of C Major using the
Modal Change objects list filter using MIDI channel 1. The
activity taking place on the canvas is mapped to 16 equal sections.
When one of these sections becomes more than 50% filled, the
MIDI data is sent out a subsequent MIDI channel in addition to
the previous channel and a bang is sent to the modal shift object
triggering a new, related mode.

Evolutio (2007) is an algorithmic composition for string quartet. It
is similar in design to the piece Modal Change (2007), in that it
uses modulates fairly regularly via the Modal Mutation object. It
is, however, quite different: where Modal Change used minimalist
gestures in a large ensemble, Evolutio functions more like a
traditional string quartet.

With the Modal Prog object, a chord progression was assigned to
the pitch engines (string quartet). Using the Modal Triad object,
each voice in the string quartet played notes from the triad
specified by the Modal Prog object. Each voice chose other notes
from the assigned mode as non-chord tones between the beats and
chord progressions. This allowed each voice to use passing tones
on weak beats to get from note to note.

6. CONCLUSION
The Modal Object Library has been used in numerous compositions
and interactive installations including EAMIR [5] and more. For
more information and to download the library, visit
www.vjmanzo.com/mol .

7. REFERENCES
 [1] Modal Object Library, available at

http://www.vjmanzo.com/mol.

 [2] Max - Cycling 74, available at
http://cycling74.com/products/maxmspjitter.

 [3] Pure Data - Pd Community Site, available at
http://puredata.info.

 [4] OpenMusic, available at
http://repmus.ircam.fr/openmusic/home.

 [5] EAMIR, available at http://www.eamir.org

 [6] R. L. Dubois. Applications of Generative String-Substitution
Systems in Computer Music. Doctoral dissertation, Columbia
University, New York, NY, 2003.

